亚洲欧美中文在线观看,永久939w78w78w乳液,色5月婷婷 亚洲,2021精品国产自在观看

  • <small id="wqkfw"></small>

    <address id="wqkfw"></address>
  • 教案模板

    5U文學(xué)網(wǎng) > 實(shí)用文 > 教學(xué)資料 > 教案模板 > 初三數(shù)學(xué)教案模板

    初三數(shù)學(xué)教案模板

    | 梓茵

    教案中對(duì)每個(gè)課題或每個(gè)課時(shí)的教學(xué)內(nèi)容,教學(xué)步驟的安排,教學(xué)方法的選擇,板書(shū)設(shè)計(jì),教具或現(xiàn)代化教學(xué)手段的應(yīng)用,各個(gè)教學(xué)步驟教學(xué)環(huán)節(jié)的時(shí)間分配等等,下面是小編為大家整理的關(guān)于初三數(shù)學(xué)教案模板,歡迎大家閱讀參考學(xué)習(xí)!

    初三數(shù)學(xué)教案模板1

    1.了解旋轉(zhuǎn)及其旋轉(zhuǎn)中心和旋轉(zhuǎn)角的概念,了解旋轉(zhuǎn)對(duì)應(yīng)點(diǎn)的概念及其應(yīng)用它們解決一些實(shí)際問(wèn)題.

    2.通過(guò)復(fù)習(xí)平移、軸對(duì)稱的有關(guān)概念及性質(zhì),從生活中的數(shù)學(xué)開(kāi)始,經(jīng)歷觀察,產(chǎn)生概念,應(yīng)用概念解決一些實(shí)際問(wèn)題.

    3.旋轉(zhuǎn)的基本性質(zhì).

    重點(diǎn)

    旋轉(zhuǎn)及對(duì)應(yīng)點(diǎn)的有關(guān)概念及其應(yīng)用.

    難點(diǎn)

    旋轉(zhuǎn)的基本性質(zhì).

    一、復(fù)習(xí)引入

    (學(xué)生活動(dòng))請(qǐng)同學(xué)們完成下面各題.

    1.將如圖所示的四邊形ABCD平移,使點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,作出平移后的圖形.

    2.如圖,已知△ABC和直線l,請(qǐng)你畫(huà)出△ABC關(guān)于l的對(duì)稱圖形△A′B′C′.

    3.圓是軸對(duì)稱圖形嗎?等腰三角形呢?你還能指出其它的嗎?

    (口述)老師點(diǎn)評(píng)并總結(jié):

    (1)平移的有關(guān)概念及性質(zhì).

    (2)如何畫(huà)一個(gè)圖形關(guān)于一條直線(對(duì)稱軸)的對(duì)稱圖形并口述它具有的一些性質(zhì).

    (3)什么叫軸對(duì)稱圖形?

    二、探索新知

    我們前面已經(jīng)復(fù)習(xí)平移等有關(guān)內(nèi)容,生活中是否還有其它運(yùn)動(dòng)變化呢?回答是肯定的,下面我們就來(lái)研究.

    1.請(qǐng)同學(xué)們看講臺(tái)上的大時(shí)鐘,有什么在不停地轉(zhuǎn)動(dòng)?旋轉(zhuǎn)圍繞什么點(diǎn)呢?從現(xiàn)在到下課時(shí)針轉(zhuǎn)了多少度?分針轉(zhuǎn)了多少度?秒針轉(zhuǎn)了多少度?

    (口答)老師點(diǎn)評(píng):時(shí)針、分針、秒針在不停地轉(zhuǎn)動(dòng),它們都繞時(shí)鐘的中心.從現(xiàn)在到下課時(shí)針轉(zhuǎn)了________度,分針轉(zhuǎn)了________度,秒針轉(zhuǎn)了________度.

    2.再看我自制的好像風(fēng)車風(fēng)輪的玩具,它可以不停地轉(zhuǎn)動(dòng).如何轉(zhuǎn)到新的位置?(老師點(diǎn)評(píng)略)

    3.第1,2兩題有什么共同特點(diǎn)呢?

    共同特點(diǎn)是如果我們把時(shí)鐘、風(fēng)車風(fēng)輪當(dāng)成一個(gè)圖形,那么這些圖形都可以繞著某一固定點(diǎn)轉(zhuǎn)動(dòng)一定的角度.

    像這樣,把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角.

    如果圖形上的點(diǎn)P經(jīng)過(guò)旋轉(zhuǎn)變?yōu)辄c(diǎn)P′,那么這兩個(gè)點(diǎn)叫做這個(gè)旋轉(zhuǎn)的對(duì)應(yīng)點(diǎn).

    下面我們來(lái)運(yùn)用這些概念來(lái)解決一些問(wèn)題.

    例1 如圖,如果把鐘表的指針看做三角形OAB,它繞O點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)得到△OEF,在這個(gè)旋轉(zhuǎn)過(guò)程中:

    (1)旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)角是什么?

    (2)經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A,B分別移動(dòng)到什么位置?

    解:(1)旋轉(zhuǎn)中心是O,∠AOE,∠BOF等都是旋轉(zhuǎn)角.

    (2)經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A和點(diǎn)B分別移動(dòng)到點(diǎn)E和點(diǎn)F的位置.

    自主探究:

    請(qǐng)看我手里拿著的硬紙板,我在硬紙板上挖下一個(gè)三角形的洞,再挖一個(gè)點(diǎn)O作為旋轉(zhuǎn)中心,把挖好的硬紙板放在黑板上,先在黑板上描出這個(gè)挖掉的三角形圖案(△ABC),然后圍繞旋轉(zhuǎn)中心O轉(zhuǎn)動(dòng)硬紙板,在黑板上再描出這個(gè)挖掉的三角形(△A′B′C′),移去硬紙板.

    (分組討論)根據(jù)圖回答下面問(wèn)題(一組推薦一人上臺(tái)說(shuō)明)

    1.線段OA與OA′,OB與OB′,OC與OC′有什么關(guān)系?

    2.∠AOA′,∠BOB′,∠COC′有什么關(guān)系?

    3.△ABC與△A′B′C′的形狀和大小有什么關(guān)系?

    老師點(diǎn)評(píng):1.OA=OA′,OB=OB′,OC=OC′,也就是對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.

    2.∠AOA′=∠BOB′=∠COC′,我們把這三個(gè)相等的角,即對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角稱為旋轉(zhuǎn)角.

    3.△ABC和△A′B′C′形狀相同和大小相等,即全等.

    綜合以上的實(shí)驗(yàn)操作得出:

    (1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

    (2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

    (3)旋轉(zhuǎn)前、后的圖形全等.

    初三數(shù)學(xué)教案模板2

    1.正確認(rèn)識(shí)什么是中心對(duì)稱、對(duì)稱中心,理解關(guān)于中心對(duì)稱圖形的性質(zhì)特點(diǎn).

    2.能根據(jù)中心對(duì)稱的性質(zhì),作出一個(gè)圖形關(guān)于某點(diǎn)成中心對(duì)稱的對(duì)稱圖形.

    重點(diǎn)

    中心對(duì)稱的概念及性質(zhì).

    難點(diǎn)

    中心對(duì)稱性質(zhì)的推導(dǎo)及理解.

    復(fù)習(xí)引入

    問(wèn)題:作出下圖的兩個(gè)圖形繞點(diǎn)O旋轉(zhuǎn)180°后的圖案,并回答下列的問(wèn)題:

    1.以O(shè)為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后兩個(gè)圖形是否重合?

    2.各對(duì)應(yīng)點(diǎn)繞O旋轉(zhuǎn)180°后,這三點(diǎn)是否在一條直線上?

    老師點(diǎn)評(píng):可以發(fā)現(xiàn),如圖所示的兩個(gè)圖案繞O旋轉(zhuǎn)180°后都是重合的,即甲圖與乙圖重合,△OAB與△COD重合.

    像這樣,把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心.

    這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn).

    探索新知

    (老師)在黑板上畫(huà)一個(gè)三角形ABC,分兩種情況作兩個(gè)圖形:

    (1)作△ABC一頂點(diǎn)為對(duì)稱中心的對(duì)稱圖形;

    (2)作關(guān)于一定點(diǎn)O為對(duì)稱中心的對(duì)稱圖形.

    第一步,畫(huà)出△ABC.

    第二步,以△ABC的C點(diǎn)(或O點(diǎn))為中心,旋轉(zhuǎn)180°畫(huà)出△A′B′C和△A′B′C′,如圖(1)和圖(2)所示.

    從圖(1)中可以得出△ABC與△A′B′C是全等三角形;

    分別連接對(duì)稱點(diǎn)AA′,BB′,CC′,點(diǎn)O在這些線段上且O平分這些線段.

    下面,我們就以圖(2)為例來(lái)證明這兩個(gè)結(jié)論.

    證明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可證:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;

    (2)點(diǎn)A′是點(diǎn)A繞點(diǎn)O旋轉(zhuǎn)180°后得到的,即線段OA繞點(diǎn)O旋轉(zhuǎn)180°得到線段OA′,所以點(diǎn)O在線段AA′上,且OA=OA′,即點(diǎn)O是線段AA′的中點(diǎn).

    同樣地,點(diǎn)O也在線段BB′和CC′上,且OB=OB′,OC=OC′,即點(diǎn)O是BB′和CC′的中點(diǎn).

    因此,我們就得到

    1.關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過(guò)對(duì)稱中心,而且被對(duì)稱中心所平分.

    2.關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形.

    例題精講

    例1 如圖,已知△ABC和點(diǎn)O,畫(huà)出△DEF,使△DEF和△ABC關(guān)于點(diǎn)O成中心對(duì)稱.

    分析:中心對(duì)稱就是旋轉(zhuǎn)180°,關(guān)于點(diǎn)O成中心對(duì)稱就是繞O旋轉(zhuǎn)180°,因此,我們連AO,BO,CO并延長(zhǎng),取與它們相等的線段即可得到.

    解:(1)連接AO并延長(zhǎng)AO到D,使OD=OA,于是得到點(diǎn)A的對(duì)稱點(diǎn)D,如圖所示.

    (2)同樣畫(huà)出點(diǎn)B和點(diǎn)C的對(duì)稱點(diǎn)E和F.

    (3)順次連接DE,EF,F(xiàn)D,則△DEF即為所求的三角形.

    例2 (學(xué)生練習(xí),老師點(diǎn)評(píng))如圖,已知四邊形ABCD和點(diǎn)O,畫(huà)四邊形A′B′C′D′,使四邊形A′B′C′D′和四邊形ABCD關(guān)于點(diǎn)O成中心對(duì)稱(只保留作圖痕跡,不要求寫(xiě)出作法).

    課堂小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng))

    本節(jié)課應(yīng)掌握:

    中心對(duì)稱的兩條基本性質(zhì):

    1.關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)點(diǎn)所連線都經(jīng)過(guò)對(duì)稱中心,而且被對(duì)稱中心所平分;

    2.關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形及其它們的應(yīng)用.

    作業(yè)布置

    教材第66頁(yè) 練習(xí)

    初三數(shù)學(xué)教案模板3

    了解中心對(duì)稱圖形的概念及中心對(duì)稱圖形的對(duì)稱中心的概念,掌握這兩個(gè)概念的應(yīng)用.

    復(fù)習(xí)兩個(gè)圖形關(guān)于中心對(duì)稱的有關(guān)概念,利用這個(gè)所學(xué)知識(shí)探索一個(gè)圖形是中心對(duì)稱圖形的有關(guān)概念及其他的運(yùn)用.

    重點(diǎn)

    中心對(duì)稱圖形的有關(guān)概念及其它們的運(yùn)用.

    難點(diǎn)

    區(qū)別關(guān)于中心對(duì)稱的兩個(gè)圖形和中心對(duì)稱圖形.

    一、復(fù)習(xí)引入

    1.(老師口問(wèn))口答:關(guān)于中心對(duì)稱的兩個(gè)圖形具有什么性質(zhì)?

    (老師口述):關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過(guò)對(duì)稱中心,而且被對(duì)稱中心所平分.

    關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形.

    2.(學(xué)生活動(dòng))作圖題.

    (1)作出線段AO關(guān)于O點(diǎn)的對(duì)稱圖形,如圖所示.

    (2)作出三角形AOB關(guān)于O點(diǎn)的對(duì)稱圖形,如圖所示.

    延長(zhǎng)AO使OC=AO,延長(zhǎng)BO使OD=BO,連接CD,則△COD即為所求,如圖所示.

    二、探索新知

    從另一個(gè)角度看,上面的(1)題就是將線段AB繞它的中點(diǎn)旋轉(zhuǎn)180°,因?yàn)镺A=OB,所以,就是線段AB繞它的中點(diǎn)旋轉(zhuǎn)180°后與它本身重合.

    上面的(2)題,連接AD,BC,則剛才的關(guān)于中心O對(duì)稱的兩個(gè)圖形就成了平行四邊形,如圖所示.

    ∵AO=OC,BO=OD,∠AOB=∠COD

    ∴△AOB≌△COD

    ∴AB=CD

    也就是,ABCD繞它的兩條對(duì)角線交點(diǎn)O旋轉(zhuǎn)180°后與它本身重合.

    因此,像這樣,把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心.

    (學(xué)生活動(dòng))例1 從剛才講的線段、平行四邊形都是中心對(duì)稱圖形外,每一位同學(xué)舉出三個(gè)圖形,它們也是中心對(duì)稱圖形.

    老師點(diǎn)評(píng):老師邊提問(wèn)學(xué)生邊解答的特點(diǎn).

    (學(xué)生活動(dòng))例2 請(qǐng)說(shuō)出中心對(duì)稱圖形具有什么特點(diǎn)?

    老師點(diǎn)評(píng):中心對(duì)稱圖形具有勻稱美觀、平穩(wěn)的特點(diǎn).

    例3 求證:如圖,任何具有對(duì)稱中心的四邊形是平行四邊形.

    分析:中心對(duì)稱圖形的對(duì)稱中心是對(duì)應(yīng)點(diǎn)連線的交點(diǎn),也是對(duì)應(yīng)點(diǎn)間的線段中點(diǎn),因此,直接可得到對(duì)角線互相平分.

    證明:如圖,O是四邊形ABCD的對(duì)稱中心,根據(jù)中心對(duì)稱性質(zhì),線段AC,BD點(diǎn)O,且AO=CO,BO=DO,即四邊形ABCD的對(duì)角線互相平分,因此,四邊形ABCD是平行四邊形.

    三、課堂小結(jié)(學(xué)生歸納,老師點(diǎn)評(píng))

    本節(jié)課應(yīng)掌握:

    1.中心對(duì)稱圖形的有關(guān)概念;

    2.應(yīng)用中心對(duì)稱圖形解決有關(guān)問(wèn)題.

    四、作業(yè)布置

    教材第70頁(yè) 習(xí)題8,9,10.

    初三數(shù)學(xué)教案模板4

    (一)知識(shí)教學(xué)點(diǎn)

    1.使學(xué)生初步了解統(tǒng)計(jì)知識(shí)是應(yīng)用廣泛的數(shù)學(xué)內(nèi)容 .

    2.了解平均數(shù)的意義,會(huì)計(jì)算一組數(shù)據(jù)的平均數(shù) .

    3.當(dāng)一組數(shù)據(jù)的數(shù)值較大時(shí),會(huì)用簡(jiǎn)算公式計(jì)算一組數(shù)據(jù)的平均數(shù) .

    (二)能力訓(xùn)練點(diǎn)  培養(yǎng)學(xué)生的觀察能力、計(jì)算能力 .

    (三)德育滲透點(diǎn)

    1.培養(yǎng)學(xué)生認(rèn)真、耐心、細(xì)致的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣 .

    2.滲透數(shù)學(xué)來(lái)源于實(shí)踐,反地來(lái)又作用于實(shí)踐的觀點(diǎn) .

    (四)美育滲透點(diǎn)  

    通過(guò)本課的學(xué)習(xí),滲透數(shù)學(xué)公式的簡(jiǎn)單美和結(jié)構(gòu)的嚴(yán)謹(jǐn)美,展示了寓深?yuàn)W于淺顯,寓紛繁于嚴(yán)謹(jǐn)?shù)霓q證統(tǒng)一的數(shù)學(xué)美 .

    重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

    1.教學(xué)重點(diǎn):平均數(shù)的概念及其計(jì)算 .

    2.教學(xué)難點(diǎn):平均數(shù)的簡(jiǎn)化計(jì)算 .

    3.教學(xué)疑點(diǎn):平均數(shù)簡(jiǎn)化公式的應(yīng)用,a如何選擇 .

    4.解決辦法:分清兩個(gè)公式,公式②的運(yùn)用要選擇一個(gè)適當(dāng)?shù)腶 .

    教學(xué)步驟

    (一)明確目標(biāo)  

    在日常生活中,我們常與數(shù)據(jù)打交道,例如,電視臺(tái)每天晚上都要預(yù)報(bào)第二天當(dāng)?shù)氐淖畹蜌鉁嘏c氣溫,商店每天都要結(jié)算一下當(dāng)天的營(yíng)業(yè)額,每個(gè)班次的飛機(jī)都要統(tǒng)計(jì)一下乘客的人數(shù)等.這些都涉及數(shù)據(jù)的計(jì)算問(wèn)題.請(qǐng)同學(xué)們思考下面問(wèn)題.(教師出示幻燈片)  

    為了從甲乙兩名學(xué)生中選拔一人參加射擊比賽,對(duì)他們的射擊水平進(jìn)行了測(cè)驗(yàn).兩人在相同條件下各射靶10次,命中的環(huán)數(shù)如下:  

    甲  7 8 6 8 6 5 9 10 7 4  乙  9 5 7 8 7 6 8 6 7 7  

    怎樣比較兩個(gè)人的成績(jī)?2.應(yīng)選哪一個(gè)人參加射擊比賽?  教師要引導(dǎo)學(xué)生觀察,給學(xué)生充分的時(shí)間去思考,并可以分成小組討論解決辦法.  

    對(duì)于這個(gè)問(wèn)題,部分學(xué)生可能感到無(wú)從下手,部分學(xué)生可能想到去比較兩組數(shù)據(jù)的平均,讓學(xué)生動(dòng)手具體算一下兩組數(shù)據(jù)的平均數(shù)結(jié)果它們相等在學(xué)生無(wú)法解決此問(wèn)題的情況下,教師說(shuō)明,這正是本章要解決的問(wèn)題之一(寫(xiě)出課題).這樣做的目的是教師有意創(chuàng)設(shè)問(wèn)題情境、制造懸念,這不僅能激發(fā)學(xué)生學(xué)習(xí)的積極性和自覺(jué)性,引起學(xué)生對(duì)所學(xué)課程的注意,還能誘發(fā)學(xué)生探求新知識(shí)的濃厚興趣.

    (二)整體感知  

    解決類似上述的問(wèn)題要用到統(tǒng)計(jì)學(xué)的知識(shí),統(tǒng)計(jì)學(xué)是一門研究如何收集、整理、分析數(shù)據(jù)并據(jù)之做出推斷的科學(xué),它以概率論為基礎(chǔ),著重研究如何根據(jù)樣本的性質(zhì)去推測(cè)總體的性質(zhì).在當(dāng)今的信息時(shí)代,統(tǒng)計(jì)學(xué)的應(yīng)用非常廣泛,以至于它已滲透到整個(gè)社會(huì)生活的各個(gè)方面.本章我們將學(xué)習(xí)統(tǒng)計(jì)學(xué)的一些初步知識(shí).

    (三)教學(xué)過(guò)程  

    這節(jié)課我們首先來(lái)學(xué)習(xí)平均數(shù).

    (出示幻燈片)請(qǐng)同學(xué)看下面問(wèn)題:  

    某班第一小組一次數(shù)學(xué)測(cè)驗(yàn)的成績(jī)?nèi)缦拢骸 ?/p>

     86 91 100 72 93 89 90 85 75 95  

    這個(gè)小組的平均成績(jī)是多少?  

    教師引導(dǎo)學(xué)生動(dòng)筆計(jì)算,并找一名學(xué)生到黑板板演,講完引例后,引導(dǎo)學(xué)生歸納出求平均數(shù)方法,這樣做使學(xué)生對(duì)平均數(shù)的計(jì)算公式能有深刻的認(rèn)識(shí) .

    2.平均數(shù)的概念及計(jì)算公式  

    一般地,如果有n個(gè)數(shù)x1、x2、x3、x4…xn ,那么x=( x1+x2+x3+x4+…+xn)/n?、? 叫做這n個(gè)數(shù)的平均數(shù), 讀作“x撥” .  

    這是在初中數(shù)學(xué)課本中第一次出現(xiàn)帶有省略號(hào)的用字母表示的n個(gè)數(shù)相加的一般寫(xiě)法 .學(xué)生對(duì)此可能會(huì)感到比較抽象,不太習(xí)慣,要向?qū)W生強(qiáng)調(diào),采用這種寫(xiě)法是簡(jiǎn)化表示,是為了使問(wèn)題的討論具有一般性 .教師應(yīng)通過(guò)對(duì)公式的剖析,使學(xué)生正確理解公式,并掌握公式中各元素的意義 .

    3.平均數(shù)計(jì)算公式①的應(yīng)用  例1 一個(gè)地區(qū)某年1月上旬各天的最低氣溫依次是(單位:℃):  

    -6,-5,-7,-6,-4,-5,-7,-8,-7  求它們的平均氣溫 .  

    讓學(xué)生動(dòng)手計(jì)算,以鞏固平均數(shù)計(jì)算公式(一名學(xué)生板演)  

    教師應(yīng)強(qiáng)調(diào):①解題格式 .②在統(tǒng)計(jì)學(xué)里處理的數(shù)據(jù)包括負(fù)數(shù) .③在本章中,如無(wú)特殊說(shuō)明,平均數(shù)計(jì)算結(jié)果保留的位數(shù)與原數(shù)據(jù)相同 .   

    例2 從一批機(jī)器零件毛坯中取出20件,稱得它們的質(zhì)量如下(單位:千克):   

    210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215   

    計(jì)算它們的平均質(zhì)量 .(用投影儀打出)   

    引導(dǎo)學(xué)生兩人一組完成計(jì)算,然后一起對(duì)答案 .由于數(shù)據(jù)較大,計(jì)算較繁,可能會(huì)出現(xiàn)不同的答案 .正好為下面提出簡(jiǎn)化計(jì)算公式作好鋪墊 .

    教師提出問(wèn)題:像例2這樣,數(shù)據(jù)較大,計(jì)算較繁,因而容易出錯(cuò),有沒(méi)有較為簡(jiǎn)便的算法呢?引導(dǎo)學(xué)生觀察數(shù)據(jù)有什么特點(diǎn)?都接近于哪一個(gè)數(shù)?啟發(fā)學(xué)生討論,尋找簡(jiǎn)便算法 .   

    學(xué)生回答:數(shù)據(jù)都在200左右波動(dòng),可將各數(shù)據(jù)同時(shí)減去200,轉(zhuǎn)而計(jì)算一組數(shù)值較小的新數(shù)據(jù)的平均數(shù),至此讓學(xué)生再一次兩人一組用簡(jiǎn)便方法計(jì)算例2,并與前面計(jì)算的結(jié)果相比較是否一樣 .  

    講完例2后,教師指出幾點(diǎn):常數(shù)a的取法不是惟一的; 讀作“x——撇——撥”;;簡(jiǎn)化計(jì)算的結(jié)果與前面毛算的結(jié)果相同 .  

    通過(guò)學(xué)生的動(dòng)手計(jì)算,若產(chǎn)生困難或錯(cuò)誤,教師及時(shí)點(diǎn)撥,引導(dǎo)學(xué)生尋找解決問(wèn)題的方法,這不僅可以激發(fā)學(xué)生學(xué)習(xí)的興趣,更培養(yǎng)了學(xué)生的發(fā)散思維能力,同時(shí)也使學(xué)生對(duì)公式②的推導(dǎo)更容易接受 .  

    3.推導(dǎo)公式②  

    一般地,當(dāng)一組數(shù)據(jù) 的各個(gè)數(shù)值較大時(shí),可將各數(shù)據(jù)同時(shí)減去一個(gè)適當(dāng)?shù)某?shù)a,得到x1▎=x1-a, x2▎=x2-a, x3▎=x3-a, ┅xn▎=xn-a,那么x▎=x-a ?、凇 ?/p>

    為了加深學(xué)生對(duì)公式②的認(rèn)識(shí),再讓學(xué)生指出例2的平均質(zhì)量各是什么?(學(xué)生回答)

    課堂練習(xí):  

    教材P148中~P149中1,2,3

    (四)總結(jié)、擴(kuò)展

    知識(shí)小結(jié):1.統(tǒng)計(jì)學(xué)是一門與數(shù)據(jù)打交道的學(xué)問(wèn),應(yīng)用十分廣泛 .本章將要學(xué)習(xí)的是統(tǒng)計(jì)學(xué)的初步知識(shí) .  

    2.求n個(gè)數(shù)據(jù)的平均數(shù)的公式① .  

    3.平均數(shù)的簡(jiǎn)化計(jì)算公式② .這個(gè)公式很重要,要學(xué)會(huì)運(yùn)用 .  

    方法小結(jié):通過(guò)本節(jié)課我們學(xué)到了示一組數(shù)據(jù)平均數(shù)的方法 .當(dāng)數(shù)據(jù)比較小時(shí),可用公式①直接計(jì)算 .當(dāng)數(shù)據(jù)比較大,而且都在某一個(gè)數(shù)左右波動(dòng)時(shí),可選用公式②進(jìn)行計(jì)算 .

    布置作業(yè)  教材P153中1、2、3、4 .

    初三數(shù)學(xué)教案模板5

    1、教材分析

    (1)知識(shí)結(jié)構(gòu)

    (2)重點(diǎn)、難點(diǎn)分析

    重點(diǎn):三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì).因?yàn)樗侨切蔚闹匾拍钪?

    難點(diǎn):①難點(diǎn)是“接”與“切”的含義,學(xué)生容易混淆;②畫(huà)三角形內(nèi)切圓,學(xué)生不易畫(huà)好.

    2、教學(xué)建議

    本節(jié)內(nèi)容需要一個(gè)課時(shí).

    (1)在教學(xué)中,組織學(xué)生自己畫(huà)圖、類比、分析、深刻理解三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì);

    (2)在教學(xué)中,類比“三角形外接圓的畫(huà)圖、概念、性質(zhì)”,開(kāi)展活動(dòng)式教學(xué).

    教學(xué)目標(biāo) :

    1、使學(xué)生了解尺規(guī)作的方法,理解三角形和多邊形的內(nèi)切圓、圓的外切三角形和圓的外切多邊形、三角形內(nèi)心的概念;

    2、應(yīng)用類比的數(shù)學(xué)思想方法研究?jī)?nèi)切圓,逐步培養(yǎng)學(xué)生的研究問(wèn)題能力;

    3、激發(fā)學(xué)生動(dòng)手、動(dòng)腦主動(dòng)參與課堂教學(xué)活動(dòng).

    教學(xué)重點(diǎn):

    三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).

    教學(xué)難點(diǎn) :

    三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).

    教學(xué)活動(dòng)設(shè)計(jì)

    (一)提出問(wèn)題

    1、提出問(wèn)題:如圖,你能否在△ABC中畫(huà)出一個(gè)圓?畫(huà)出一個(gè)的圓?想一想,怎樣畫(huà)?

    2、分析、研究問(wèn)題:

    讓學(xué)生動(dòng)腦筋、想辦法,使學(xué)生認(rèn)識(shí)作三角形內(nèi)切圓的實(shí)際意義.

    3、解決問(wèn)題:

    例1 作圓,使它和已知三角形的各邊都相切.

    引導(dǎo)學(xué)生結(jié)合圖,寫(xiě)出已知、求作,然后師生共同分析,尋找作法.

    提出以下幾個(gè)問(wèn)題進(jìn)行討論:

    ①作圓的關(guān)鍵是什么?

    ②假設(shè)⊙I是所求作的圓,⊙I和三角形三邊都相切,圓心I應(yīng)滿足什么條件?

    ③這樣的點(diǎn)I應(yīng)在什么位置?

    ④圓心I確定后半徑如何找.

    A層學(xué)生自己用直尺圓規(guī)準(zhǔn)確作圖,并敘述作法;B層學(xué)生在老師指導(dǎo)下完成.

    完成這個(gè)題目后,啟發(fā)學(xué)生得出如下結(jié)論: 和三角形的各邊都相切的圓可以作一個(gè)且只可以作出一個(gè).

    (二)類比聯(lián)想,學(xué)習(xí)新知識(shí).

    1、概念:和三角形各邊都相切的圓叫做,內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個(gè)三角形叫做圓的外切三角形.

    2、類比:

    名稱

    確定方法

    圖形

    性質(zhì)

    外心(三角形外接圓的圓心)

    三角形三邊中垂線的交點(diǎn)

    (1)OA=OB=OC;

    (2)外心不一定在三角形的內(nèi)部.

    內(nèi)心(三角形內(nèi)切圓的圓心)

    三角形三條角平分線的交點(diǎn)

    (1)到三邊的距離相等;

    (2)OA、OB、OC分別平分∠BAC、∠ABC、∠ACB;

    (3)內(nèi)心在三角形內(nèi)部.

    3、概念推廣:和多邊形各邊都相切的圓叫做多邊形的內(nèi)切圓,這個(gè)多邊形叫做圓的外切多邊形.

    4、概念理解:

    引導(dǎo)學(xué)生理解及圓的外切三角形的概念,并與三角形的外接圓與圓的內(nèi)接三角形概念相比較,以加深對(duì)這四個(gè)概念的理解.使學(xué)生弄清“內(nèi)”與“外”、“接”與“切”的含義.“接”與“切”是說(shuō)明三角形的頂點(diǎn)和邊與圓的關(guān)系:三角形的頂點(diǎn)都在圓上,叫做“接”;三角形的邊都與圓相切叫做“切”.

    (三)應(yīng)用與反思

    例2 如圖,在△ABC中,∠ABC=50°,∠ACB=75°,點(diǎn)O是三角形的內(nèi)心.

    求∠BOC的度數(shù)

    分析:要求∠BOC的度數(shù),只要求出∠OBC和∠0CB的度數(shù)之和就可,即求∠l十∠3的度數(shù).因?yàn)镺是△ABC的內(nèi)心,所以O(shè)B和OC分別為∠ABC和∠BCA的平分線,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的內(nèi)角和定理易求出∠BOC的度數(shù).

    解:(引導(dǎo)學(xué)生分析,寫(xiě)出解題過(guò)程)

    例3 如圖,△ABC中,E是內(nèi)心,∠A的平分線和△ABC的外接圓相交于點(diǎn)D

    求證:DE=DB

    分析:從條件想,E是內(nèi)心,則E在∠A的平分線上,同時(shí)也在∠ABC的平分線上,考慮連結(jié)BE,得出∠3=∠4.

    從結(jié)論想,要證DE=DB,只要證明BDE為等腰三角形,同樣考慮到連結(jié)BE.于是得到下述法.

    證明:連結(jié)BE.

    E是△ABC的內(nèi)心

    又∵∠1=∠2

    ∠1=∠2

    ∴∠1+∠3=∠4+∠5

    ∴∠BED=∠EBD

    ∴DE=DB

    練習(xí)分析作出已知的銳角三角形、直角三角形、鈍角,并說(shuō)明三角形的內(nèi)心是否都在三角形內(nèi).

    (四)小結(jié)

    初三數(shù)學(xué)教案模板相關(guān)文章:

    幼兒園中班數(shù)學(xué)教案方案5篇

    大班數(shù)學(xué)教案 大班數(shù)學(xué)教案范文

    大班數(shù)學(xué)區(qū)活動(dòng)方案5篇

    新學(xué)期教師課改工作計(jì)劃6篇

    幼兒園大班數(shù)學(xué)教案范本

    小學(xué)數(shù)學(xué)活動(dòng)方案策劃書(shū)5篇

    值周教師工作計(jì)劃7篇

    2021初三日記臨近期末5篇

    教師教育教學(xué)工作總結(jié)5篇

    北師大版三年級(jí)上冊(cè)數(shù)學(xué)教學(xué)工作總結(jié)5篇

    95904