圓的面積教學設計活動教案
在現(xiàn)實學習生活中,大家一定沒少參加主題班會吧?主題班會有利于提高學生的認知能力和自我教育能力,更有利于班級集體的建設。敲定一個主題班會,都需要做哪些準備呢?下面是由小編給大家?guī)淼膱A的面積教學設計活動教案7篇,讓我們一起來看看!
圓的面積教學設計活動教案篇1
一、教材分析
《圓的面積》,是北師大版六年制小學數(shù)學第十一冊第一單元中的內容,這是一節(jié)推導與計算相結合來研究幾何形體的教學內容,它是在學生學習了平面圖形的面積計算和圓的初步認識以及圓的周長的基礎上進行教學的。是幾何知識的一項重要內容,為以后學習圓柱、圓錐等知識作了鋪墊。
二、學情分析
在學習本課內容前,學生已經認識了圓,會求圓的周長,在學習長方形、平行四邊形、三角形、梯形等平面圖形的面積時,已經學會了用割、補、移等方式,把未知的問題轉化成已知的問題,因此教學本課時,可以引導學生用轉化的方法推導出圓的面積公式。
三、教學目標(課件)
(1)理解圓的面積含義,推導出圓面積計算的公式,并會用公式計算圓的面積。
(2)進一步培養(yǎng)學生樹立和運用轉化的思想,初步滲透極限思想,培養(yǎng)學生的觀察能力和動手操作能力。
(3)注重小組合作培養(yǎng)學生互相合作、互相幫助的優(yōu)秀品質及集體觀念。
基于以上的教學目標確定教學重點:掌握圓面積的計算公式;弄清拼成的圖形各部分與原來圓的關系。
教學難點:是圓面積計算公式的推導和極限思想的滲透;
四、學情分析
為了突出重點、突破難點,培養(yǎng)學生的探究精神和創(chuàng)新精神,本課教學以“學生發(fā)展為本,以活動探究為主線,以創(chuàng)新為主旨”:主要采用了以下4個教學策略:
1、知識呈現(xiàn)生活化。以草坪中間的自動噴灌龍頭為草坪噴水為主線,讓學生提出問題讓生活數(shù)學這一條主線貫穿于課的始終。
2、學習過程活動化。讓學生在操作活動中探究出圓的面積計算公式。
3、學生學習自主化。讓學生通過動手操作、自主探究、合作交流的學習方式去探究圓的面積計算公式。
4、學習方法合作化。在探究圓的面積計算公式中采用4人小組合作學習的方法。從而真正實踐學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。
五、教學過程
本著“將課堂還給學生,讓課堂煥發(fā)生命的活力”的指導思想,我將教學過程擬訂為“創(chuàng)設情境,激趣引入——引導探究,構建模型——分層訓練,拓展思維——總結全課,布置作業(yè)”四個環(huán)節(jié)進行,努力構建自主創(chuàng)新的課堂教學模式。
(一)創(chuàng)設情境,激趣引入
數(shù)學來源于生活,有趣的生活情境,能激發(fā)學生好奇心和強烈的求知欲,讓學生在生動具體的情境中學習數(shù)學,從而使教材與學生之間建立相互包容、相互激發(fā)的關系。讓學生既認識了自身,又大膽而自然地提出猜想。在課的一開始,我設計了“自動噴水頭澆灌草地得出一個半徑是5米的圓”這一情境(課件),讓學生在情境中尋找有用的數(shù)學信息并提出數(shù)學問題(課件),在思考“噴水頭轉動一周可以澆灌多大面積”的過程中,讓學生在具體情境中了解圓的面積的含義,體會計算圓的面積的必要性,并引發(fā)研究圓的面積的興趣,為下一環(huán)節(jié)做好鋪墊。
(二)引導探究,構建模型
第二環(huán)節(jié)是課堂教學的中心環(huán)節(jié),為了做到突出重點,突破難點,我安排了啟發(fā)猜想,明確方向————化曲為直,掃清障礙————實驗探究,推導公式————展示成果,體驗成功————首尾呼應,鞏固新知五大步進行:
第一步:啟發(fā)猜想,明確方向。
鼓勵學生進行合理的猜想,可以把學生的思維引向更為廣闊的空間。因此,在第一步:啟發(fā)猜想,明確方向中。我啟發(fā)學生猜想(課件):“比較兩個圓誰的面積大,你覺得圓的面積和哪些條件有關?怎樣推導圓的面積計算公式呢?”對于第一個問題,學生通過觀察比較,很自然的會作出合理猜想。但對于怎樣推導圓的面積計算公式這個問題,學生根據已有知識,或許能想到將圓轉化為以前學過的圖形,再求面積。至于如何轉化,怎樣化曲為直,因受知識的限制,學生不能準確說出。我抓住這一有力契機,進入下一步教學。
第二步:化曲為直,掃清障礙。
首先借助多媒體課件將大小相等的圓分別沿半徑剪開,先分成8等份、然后拉直,再分成16等份拉直、最后分成32等份,再拉直,讓學生通過觀察比較,發(fā)現(xiàn)平均分的份數(shù)越多,分成的近似等腰三角形的底就越接近于線段(課件)。這一規(guī)律的發(fā)現(xiàn),不僅向學生滲透了極限的思想,更重要的是為學生徹底掃清了“轉化”的障礙。這時我適時放手,進入下一步教學。
第三步:實驗探究,推導公式。
首先提出開放性問題:你能不能將圓拼成以前學過的圖形,試著剪一剪,拼一拼,想一想,議一議拼成的圖形的各部分與原來的圓有什么關系?能不能推導出圓的面積計算公式?這里,我沒有硬性規(guī)定讓學生拼出什么圖形,而是放開手腳讓學生拿出已分成16等份的圓形卡紙小組合作去剪,去拼擺,并鼓勵學生拼擺出多種結果,從而培養(yǎng)了學生的發(fā)散思維和創(chuàng)新能力。
第四步:展示成果,體驗成功。
在學生小組討論后,引導學生進入第四步教學,為學生創(chuàng)設一個展示成果,體驗成功的機會。讓學生向全班同學介紹一下自己是如何拼成近似的平行四邊形或長方形或三角形或梯形的,如何推導出圓的面積計算公式的。然后由學生自己,同學和教師給予評價。同時對拼成近似長方形的情況,教師再結合多媒體的直觀演示,并結合板書。
(課件)首先讓學生明確圓周長的一半相當于這個近似長方形的長,半徑等于寬,圓的面積等于長方形的面積,這是教學的關鍵,再此基礎上進行推導(課件),得出圓面積等于周長的一半乘半徑,再讓學生弄清圓周長的一半等于πr,從而得到圓的面積計算公式化簡后用字母表示為S=πr2。
第五步:首尾呼應,鞏固新知
在學生獲得圓的面積計算公式后,“龍頭最多能噴灌多大草坪呢”?求出它的面積。從而達到了對新知的鞏固。
四、分層訓練,拓展思維
為了深化探究成果,在第三環(huán)節(jié):分層訓練。
第一層:基本性練習
第二層:綜合性練習
第三層:發(fā)展性練習。
實現(xiàn)層層深入,由淺入深。逐步訓練學生思維的靈活性和深刻性,并使學生深刻體會到“數(shù)學來源于生活,并為生活服務”的道理。
第一層:基本性練習
1、求下面各個圓的面積。(課件出示)
(1)半徑為3分米;
(2)直徑為10米。
(3)周長為13厘米。
第二層:綜合性練習
2、一張圓桌的桌面直徑是1.5米,油漆師傅要在圓桌面的邊上貼一圈鋁合金,并在正面漆上油漆。請問,油漆師傅要買多長的鋁合金,油漆的面積有多大?
第三層:發(fā)展性練習
3、王大伯想用31.4米長的鐵絲在后院圍一個菜園,要使面積大一些,該圍成正方形好還是圓形好呢?你能當回小參謀嗎?
4、一塊正方形草坪,邊長10米.草坪中間的自動噴灌龍頭的射程是5米。
(1)這個龍頭最多可噴灌多大面積的草坪?
(2)噴灌后至少可剩下的面積有多大?
六、評價和反思
這節(jié)課緊緊抓住了教學重點,通過多媒體課件的演示,以及學生的動手操作,把一個圓通過分、剪、拼等過程,轉化為一個近似的長方形,從中發(fā)現(xiàn)圓和拼成的長方形的聯(lián)系,這種從多角度思考的教學理念,既溝通了新舊知識的聯(lián)系,又激發(fā)了學生的求知欲,并培養(yǎng)了學生探索問題的能力。
圓的面積教學設計活動教案篇2
教學內容:
義務教育課程標準實驗教科書六年級上冊P67-68。
教學目標:
1、讓學生經歷猜想、操作、驗證、討論和歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決簡單的相關問題。
2、經歷圓的面積公式的推導過程,進一步體會“轉化”和“極限”的數(shù)學思想,增強空間觀念,發(fā)展數(shù)學思考。
3、感悟數(shù)學知識內在聯(lián)系的邏輯之美,體驗發(fā)現(xiàn)新知識的快樂,增強學生的合作交流意識和能力,培養(yǎng)學生學習數(shù)學的興趣。
教學重點:
掌握圓的面積計算公式,能夠正確地計算圓的面積。
教學難點:
理解圓的面積計算公式的推導。
教學過程:
一、回憶舊知、揭示課題
1、談話引入
前些日子我們已經研究了圓,今天咱們繼續(xù)研究圓。
2、畫圓
首先請同學們拿出你們的圓規(guī)在練習本上畫一個圓。
3、比較圓的大小
請小組內同學互相看一看,你們畫的圓一樣嗎?為什么有的同學畫的圓大一些,有的同學畫的圓小一些?看來圓的大小與什么有關?
4、揭示課題
我們把圓所占平面的大小叫做圓的面積。(出示課題)
二、動手操作,探索新知
1、確定策略,體會轉化
(1)明確研究問題
師:同學們都認為圓的面積與它的半徑有關,那么圓的面積和半徑究竟有怎樣的關系呢?這就是我們這節(jié)課要研究的問題。
(2)體會轉化
怎么去研究呢?這讓我想起了《曹沖稱象》的故事。同學們聽過曹沖稱象的故事嗎?誰能用幾句話簡單地概括一下這個故事?曹沖之所以能稱出大象的重量,你覺得關鍵在于什么?(把大象的重量轉化成石頭的重量)
其實在我們的數(shù)學學習中我們就常常用到轉化的方法。請同學們在大腦中快速搜索一下,以前我們在研究一個新圖形的面積時,用到過哪些好的方法?
預設:
學生回憶平行四邊形、三角形、梯形的面積推導方法。
當學生說不上來時,老師提醒:比如,當我們還不會計算平行四邊形的面積的時候,是利用什么方法推導出了平行四邊形的面積計算公式呢?(割補法)
三角形和梯形的面積計算公式又是怎么推導出來的呢?(用兩個完全一樣的三角形或梯形拼成平行四邊形)(課件演示推導過程)
小結:
你們有沒有發(fā)現(xiàn)這些方法都有一個共同點?
(3)確定策略
那咱們今天研究的圓是否也能轉化成我們已經學過的圖形呢?
如果我們也像推導三角形、梯形面積那樣用兩個完全相同的圓形拼一拼,你認為可能轉化成我們學過的圖形嗎?那怎么辦呢?(割補法)怎么剪呢?
①引導學生說出沿著直徑或半徑,把圓進行平均分;
②師示范4等份、8等份的剪法和拼法;
2、明確方法,體驗極限
(1)學生動手操作16等份的拼法;
(2)比較每一次所拼圖形的變化;
(3)電腦演示32等份、64等份、128等份所拼的圖形,讓學生體驗分成的份數(shù)越多,拼成的圖形就越接近長方形。
3、深化思維,推導公式
(1)請同學們仔細觀察轉化后的長方形,它與原來的圓有什么聯(lián)系?(請同學們在小組內互相說一說)
(2)交流發(fā)現(xiàn),電腦演示圓周長和長,半徑和寬的關系。
(3)多讓幾個學生交流轉化后的長方形和原來圓之間的聯(lián)系。
(4)根據長方形的面積公式推導圓的面積計算公式。
三、運用公式,解決問題
1、現(xiàn)在要求圓的面積是不是很簡單了?知道什么條件就可以求出圓的面積了?
出示主題圖求面積:這個圓形草坪的半徑是10m,它的面積是多少平方米?
2、判斷對錯:
(1)直徑是2厘米的圓,它的面積是12.56平方厘米。
(2)兩個圓的周長相等,面積也一定相等。
(3)圓的半徑越大,圓所占的面積也越大。
(4)圓的半徑擴大3倍,它的面積擴大6倍。
3.知道了半徑就可以求出圓的面積,那知道圓的周長能求出圓的面積嗎?
四、總結新知,深化拓展
1.小結:
通過剛才的研究同學們推導出了圓的面積計算公式,更重要的是大家運用轉化的方法把圓這個新圖形轉化成了我們已經學過的平行四邊形和長方形,以后大家遇到新問題都可以用轉化的方法嘗試一下。
2、拓展
在剪拼長方形的過程中,有同學產生了疑問,能不能把剪下來的小扇形拼成三角形或者是梯形呢?讓我們一起來看一下。(課件出示拼的過程)
那利用拼成的三角形和梯形又能推導出圓的公式嗎?有興趣的同學可以課后去剪一剪、拼一拼、想一想、算一算,相信你一定會有更多的收獲。
圓的面積教學設計活動教案篇3
教學內容:
國標本蘇教版五下第十單元P103-105例7、例8和“練一練”、練習十九的第1題
教學目標:
1、使學生經歷操作、觀察、驗證和討論歸納等數(shù)學活動的過程,探索并掌握圓面積的計算公式,能正確計算圓的面積,并能應用公式解決相關的簡單問題。
2、使學生進一步體會“轉化”方法的價值,培養(yǎng)運用已有知識解決新問題的能力,發(fā)展空間觀念和初步推理的能力。
3、讓學生進一步體驗數(shù)學與生活的聯(lián)系,感受用數(shù)學的方式解決實際問題的過程,提高數(shù)學學習的興趣。
教學重點:
探索圓面積的計算
教學難點:
理解面積的意義,推導圓的面積計算公式
教學過程
一、導入新課。
(一)關于圓你已經知道了什么?你還想知道什么?
(二)你覺得什么是圓的面積?(讓學生用手摸一摸圓的周長和面積)
(三)你覺得圓的面積可能和什么有關?
(四)出示下圖
(五)問:看了上圖你有什么想法?(課件動態(tài)顯示圓面積與4r2和3r2的)關系。
(六)思考:圓的面積應該怎樣計算呢?對于這個問題你有些什么思考?
小結:將圓轉化成已學過的圖形,從而推導出它的面積計算公式。是一種不錯的想法。
二、探索圓積的計算公式
(一)讓學生試著將圓剪拼成長方形。
(二)閱讀課本P104頁
(三)讓學生再操作
(四)課件演示
(五)讓學生觀察、比較、想象。如果等分的份數(shù)越多,每一份就會越細,拼成的圖形就會越接近于長方形。
(六)引導觀察討論:這個拼成的長方形和圓有什么關系?
(七)匯報討論結果。
這個用圓分割成的小塊拼成的長方形,寬就是圓的半徑r,長就是圓的周長的一半,也就是2πr÷2=πr。
因為長方形面積=長×寬
所以圓的面積=πr×r=πr2
用S表示圓的面積,那么圓的面積計算公式就是:
S=πr2
(八)讓學生用語言表述圓面積的推導過程(指名說、同桌互說)
(九)教學例9
1、出示例9。一個自動旋轉噴水器的最遠噴水距離大約是5米。它旋轉一周后噴灌的面積大約是多少平方米?
2、讓學生嘗試解答。
3、集體評議
4、思考:在進行圓面積的計算時要注意什么?(平方的計算和單位名稱)
三、知識運用
(一)求出下列各個圖形的面積。(P105頁的練一練)
(二)根據下面所給的條件,求圓的面積。
1)半徑2分米2)直徑10厘米3)周長12.56
(生獨立解答,思考3)面積和周長相等嗎?做了這些題目你有什么體會?)
四、本課小結。
通過本課的學習你有什么收獲?有什么體會?
圓的面積教學設計活動教案篇4
教學目標
1、經歷圓面積計算公式的推導過程,掌握圓的面積計算公式。
2、能正確運用圓面積的計算公式計算圓的面積。
3、在探究圓面積的計算公式過程中,體會轉化的數(shù)學思想方法;初步感受極限的思想。
教學重點和難點:
圓面積的計算公式推導。
教學準備:
圓形紙片、剪刀、多媒體課件等。
教學過程
課前談話:
聊一聊《曹沖稱象》的故事。
(設計意圖:放松學生的緊張心情,為課堂教學做好了心理準備;另一方面,用《曹沖稱象》的故事,喚起學生已有的經驗。設計“怎么不直接稱大象的重量?”這一關鍵問題,抓住學生回答中的“用石頭代替大象”“石頭的重量和大象的重量相等”等要點,把學生經驗中的“轉化”思想激活,為新課的教學做好思想方法上的準備。)
教學過程:
一、開門見山,揭示課題
(出示一個圓)大家看,這是什么圖形?
我們已經認識了圓,學習了圓的周長,這節(jié)課我們一起來學習圓的面積。(板書課題:圓的面積)
(設計題圖:采用開門見山的的引入方式,這樣設計簡潔明快,結構緊湊,能保證把過程性目標落實到位。)
二、第一次探究,明確思路,體會“轉化”的數(shù)學思想方法
請你想一想,什么是圓的面積呢?
圓所占平面的大小就是圓的面積。那怎么求圓的面積呢?
圓能不能轉化成我們學過的圖形呢?我們可以試一試。請大家利用手中的圓紙片和準備的工具在小組內研究研究。
(設計意圖:在學生迷茫時指明了思考的方向和方法,又讓學生把“圓”這個看似特殊的圖形(用曲線圍成的圖形)與以前學過的圖形(用直線段圍成的圖形)有機地聯(lián)系起來,溝通知識之間的聯(lián)系,促成遷移。)
怎樣讓扇形和三角形的面積接近一些?
現(xiàn)在,有兩種思路,一種是把圓折一折想轉化成三角形,還有一種是想通過剪拼把圓轉化成平行四邊形,你們發(fā)現(xiàn)這兩種方法的共同點了嗎?
把圓這個新圖形轉化成已經學過的圖形求出面積。
(設計意圖:“你們發(fā)現(xiàn)這兩種方法的共同點了嗎?”這一關鍵問題,旨在引導學生通過回顧反思,達到滲透“轉化”這一數(shù)學思想方法的目的。)
三、第二次探究,明確方法,體驗“極限思想”
我發(fā)現(xiàn)一個問題,不管是折成的三角形,還是剪拼成的平行四邊形都不是很像,怎么才能更像呢,這就是下面要研究的問題。請每個小組在兩種思路中選擇一種繼續(xù)研究。
為什么要折這么多份?
把圓分的份數(shù)越多,其中的一份越接近三角形。三角形的底可以看成這段弧,三角形的高可以看成是圓的半徑。你們會求三角形的面積嗎?三角形的面積會求了,能求出圓的面積嗎?
把圓剪成更多份,能讓拼成的圖形更接近平行四邊形。
(設計意圖:讓學生真切地看到“自己想象的過程”,充分地體驗“極限思想”。)
四、第三次探究,深化思維,推導公式
剛才同學們借助學具通過動手操作,都找到解決問題的方法了。一種是把圓轉化成長方形求出面積;一種是把圓轉化成三角形,得到圓的面積。可是數(shù)學學習不僅需要動手操作,更需要借助數(shù)字、字母和符號等進行動腦思考和推理?,F(xiàn)在,老師想給大家提個更高的要求:每個小組能不能還利用剛才選擇的方法,推導出圓的面積計算公式呢?
(設計意圖:在第二次探究中,學生主要是借助學具進行動手操作,明晰求圓的面積的方法。操作對于小學生學習數(shù)學是必不可少的手段和方法,但數(shù)學思維的特點是要進行邏輯思考和推理。
第三次探究結果的交流,教師有意識地先讓學生交流將圓轉化成長方形求出圓的面積公式的方法,因為這種方法學生理解起來比較容易,是要求每個學生都要掌握的方法。)
五、解決問題
1、現(xiàn)在你能求出黑板上這個圓形紙片的面積了吧?需要什么條件?這個圓的半徑是10厘米,面積是多少呢?請大家做在練習本上。(請一名學生到黑板上板演。)
(教師組織交流。)
2、知道圓的半徑可以求出圓的面積,那么,知道直徑和周長能不能求出圓的面積呢?教師出示直徑為6分米的圓和周長為12.56厘米的圓,學生思考后說出求面積的方法,即要求圓的面積必須先根據直徑或周長求出圓的半徑。
(設計意圖:因為本節(jié)課的主要目標是引導學生去經歷探究圓的面積公式的過程,充分體驗“轉化”和“極限思想”,而有關求圓的面積的變式練習,以及利用圓的面積公式解決實際問題的練習都安排在下一節(jié)課中。因此,這節(jié)課只設計了幾個基本練習,目的是檢驗學生對圓的面積的理解和掌握程度。)
六、小結
圓的面積教學設計活動教案篇5
教學目標:
1、讓學生經歷操作、觀察、填表、驗證、討論和歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題,構建數(shù)學模型。
2、讓學生進一步體會“轉化”的數(shù)學思想方法,感悟極限思想的價值,培養(yǎng)運用已有知識解決新問題的能力,增強空間觀念,發(fā)展數(shù)學思考。
3、讓學生進一步體驗數(shù)學與生活的聯(lián)系,感受用數(shù)學的方式解決實際問題的過程,提高學習數(shù)學的興趣。
教學重難點:
重點:圓的面積計算公式的推導和應用。
難點:圓的面積推導過程中,極限思想(化曲為直)的理解。
教學準備:
教具:多媒體課件、面積轉化教具。
學具:書、計算器、16等份教具、作業(yè)紙。
教學過程:
一、創(chuàng)設情境、揭示課題
1、師:大家看,一匹馬被拴在木樁上,它吃草的時候繃緊繩子繞了一圈。從圖中,你知道了哪些信息?
(復習圓的相關特征)
師:那馬最多能吃多大面積的草呢?
師:圓所圍成的平面的大小就叫做圓的面積。
師:今天我們繼續(xù)來研究圓的面積。(揭示課題)
2、師:你想研究它的哪些問題呢?(引導學生提出疑問)
【設計意圖:在教學過程的伊始就用這個生活中的數(shù)學問題來導入新課的學習,既可以激起學生學習的興趣,又可以為后面圓面積的學習奠定基礎,更可以讓學生從課堂上涉獵生活中的數(shù)學問題,讓學生體驗到數(shù)學來源于生活?!?/p>
二、猜想驗證、初步感知
1、實驗驗證
(1)師:猜一猜,圓的面積可能會和它的什么有關系?
師:你覺得圓的面積大約是正方形的幾倍?
(2)師:對我們的估計需要進行?
生:驗證。
師:用什么方法驗證呢?
師:下面請大家先數(shù)數(shù)圓的面積是多少。
師:數(shù)起來感覺怎么樣?有沒有更簡潔一點的方法?
(引導學生發(fā)現(xiàn)可以先數(shù)出 個圓的方格數(shù),再乘4就是圓的面積)
(讓學生在圖1中數(shù)一數(shù),用計算器算一算,填寫表格里的第1行。)
圓的半徑
(cm)
圓的面積
(cm2)圓的面積
(cm2)正方形的面積
(cm2)
圓的面積大約是正方形面積的幾倍
(精確到十分位)
(3)師:只用一個圓,還不足以驗證猜想,作業(yè)紙上老師還準備了兩個圓,同桌合作,分別用同樣的方法把研究成果填寫在表格中。(課件出示圖2和圖3)
(學生完成后交流匯報。)
師:仔細觀察表中的數(shù)據,你有什么發(fā)現(xiàn)?
生:這三個圓的半徑雖然不同,但是圓的面積都是它對應正方形面積的3倍多一些。
3、師:正方形面積可以用r2表示,那圓的面積和它半徑平方之間有什么關系呢?
生:圓的面積是它半徑平方的3倍多一些。
小結:我們經過猜測——數(shù)方格——驗證,最終發(fā)現(xiàn)圓的面積是正方形面積也就是它半徑平方的3倍多一些。
設計意圖:從學生熟悉的數(shù)方格開始學習圓面積的計算,有利于學生從整體上把握平面圖形面積計算的學習,有利于充分激活學生已有的關于平面圖形面積計算的知識和經驗,從而為進一步探索圓的面積公式作好準備。由數(shù)方格獲得的初步結論對接下來的轉化推導相互印證,使學生充分感受圓面積公式推導過程的合理性。
三、實驗操作、推導公式
1、感受轉化,滲透方法
(課件再次出示馬吃草圖)
師:知道了3倍多一些,就能準確算出這匹馬最多可以吃多大面積的草了嗎?
(引導學生發(fā)現(xiàn),3倍多一些到底多多少還不清楚,需要繼續(xù)研究能準確計算圓面積的方法。)
2、師:大家還記得平行四邊形、三角形、梯形的面積計算公式分別是如何推導出來的嗎?
(學生回憶后匯報,教師演示,激活轉化思路)
3、第一輪探究——明確思路,體會轉化
師:想想看,圓能不能轉化成學過的圖形?是否可以化曲為直呢?
生:剪圓。
師:怎么剪呢?沿著什么剪?
生:沿著直徑或半徑剪開。
(分別演示2等份、4等份、8等份,引導學生發(fā)現(xiàn)邊越來越直,剪拼的圖形越來越接近平行四邊形)
4、第二輪探究——明確方法,體驗極限
師:剛才我們將圓分別剪成4等份、8等份再拼成新的圖形是想干什么呀?
生:想把圓形轉化成平行四邊形。
師:那還能更像嗎?
生:可以將圓片平均分成16份。
(引導學生把16、32等份的圓拼成近似的長方形,上臺展示)
師:從哪兒可以看出這兩幅圖更接近平行四邊形了?
生:邊更直了。
師:是什么方法使得邊越來越直了?
生:平均分的份數(shù)越來越多。
(引導學生體驗把圓平均分成64份、128份……剪拼后的圖形越來越接近長方形)
師:如果我們平均分的份數(shù)足夠多,就化曲為直,最后拼成的圖形——就成長方形了。
設計意圖:通過這一環(huán)節(jié),滲透一種重要的數(shù)學思想——轉化,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊的知識解決新的問題,從而推及到圓的面積能不能轉化成以前學過的平面圖形!如果能,我們可以很容易發(fā)現(xiàn)它的計算方法了。讓學生迅速回憶,調動原有的知識,為新知識的“再創(chuàng)造”做好知識的準備。學生展開想象的翅膀,從而得出等分的份數(shù)愈多,拼成的圖形就越接近平行四邊形。在想象的過程中蘊含了另一個重要數(shù)學思想的滲透——極限思想。
(2)師:我們把圓轉化成了長方形,什么變了,什么沒變?
生:形狀變了,面積大小沒有變。
師:這樣就把圓的面積轉化成了?
生:長方形的面積。
師:要求圓的面積,只要求出?
生:長方形的面積。
5、第3輪探究——深化思維,推導公式
師:仔細觀察剪拼成的長方形,看看它與原來的圓之間有什么聯(lián)系?將發(fā)現(xiàn)填寫在作業(yè)紙第2題中,然后小組內交流一下。
(小組討論,發(fā)現(xiàn):長方形的寬等于圓的半徑,長方形的長等于圓周長的一半。)
師:長方形的寬和圓的半徑相等,這里的寬也可以用r表示。那么,長方形的長又可以怎么表示呢?(重點引導學生理解長:C÷2=2πr÷2=πr)
(通過長方形面積計算方法,引出圓的面積計算方法)
師:圓的面積是它半徑平方的3倍多一些,準確地說是它半徑平方的多少倍?
生:π倍。
師:有了這樣的一個公式,知道圓的什么,就可以計算圓的面積了。
生:半徑。
5、做“練一練”
完成作業(yè)紙第3題,交流反饋。
6、(課件再次出示牛吃草圖)
師:這匹馬最多能吃多大面積的草,現(xiàn)在會求了嗎?
設計意圖:在教師的引導下,使學生通過自己主動的觀察、思考、交流。運用已有的經驗去探索新知,把圓轉化成已學過的長方形來推導出圓面積的計算公式。通過實驗操作,經歷公式的推導過程,不但使學生加深對公式的理解,而且還能有效的培養(yǎng)學生的邏輯思維能力和演算推理能力,學生在求知的過程中體會到數(shù)形結合的內在美,品嘗到成功的喜悅。
四、解決問題、拓展應用
1、師:在日常生活中,經常會遇到與圓面積計算有關的實際問題。
(課件出示例9)
分析題意后學生獨立完成書本第105頁例9。
(組織交流,評價反饋)
2、完成作業(yè)紙第4題
師:接著看,默讀題目,完成作業(yè)紙第3題。
(學生獨立完成,交流反饋)
五、全課小結、回顧反思
師:你們對于圓面積的疑問現(xiàn)在解開了嗎?又有了哪些新的收獲?
師:同學們,猜想驗證、操作發(fā)現(xiàn)是我們在數(shù)學學習中探索未知領域時經常要用到的方法,用好它相信同學們會有更多的發(fā)現(xiàn)!
設計意圖:全課總結不僅要重視學習結果的回顧再現(xiàn),也要關注學習經驗的反思提升。在這一過程中,學生不僅獲得了知識,更重要的是學到了科學探究的方法。
圓的面積教學反思
本節(jié)課是在學生掌握了面積的含義及長方形、正方形等平面圖形的面積計算方法,認識了圓,會計算圓的周長的基礎上進行教學的。
成功之處:
1.以數(shù)學思想為引領,探索圓的面積計算公式的推導。學生對于把圓的面積轉化為已學過圖形的面積并不陌生,通過以前相關知識的學習,學生很自然想到利用轉化思想把圓的面積轉化為長方形、平行四邊形的面積來推導計算圓的面積。在教學中,我首先通過出示學過的圖形長方形、正方形、三角形、平行四邊形、梯形,讓學生回顧這些圖形的面積計算,從而為教學圓的面積做好鋪墊。
2.利用多媒體的優(yōu)勢,與學生的實際操作相結合,使學生不僅知道圓的面積推導過程,還在學習中再一次溫習轉化思想,掌握解決問題的策略。在教學中,通過學生的操作,與多媒體的動態(tài)演示,使學生清楚的發(fā)現(xiàn)圓的面積與近似長方形面積之間的關系:近似長方形的長相當于圓周長的一半,寬相當于圓的半徑,由此推導出圓的面積是:S=∏ 。
不足之處:
學生由于事先在課前已把課本中的附頁圓等分剪下來,對于把圓的面積轉化成長方形、平行四邊形有了一定的思維限制,學生是不是只是單純的操作,而忽略了思維的進一步深入,還有待研究。
再教設計:
盡量放手給予學生最大的思考時間和空間,讓學生在思索、質疑中不斷建構知識的來龍去脈,習題要精選,注意變化的形式。
圓的面積教學設計活動教案篇6
教學目標
1、使學生理解圓的面積的含義.經歷體驗圓的面積公式的推導過程,理解和掌握圓的面積公式。
2、使學生能夠正確地計算圓的面積,培養(yǎng)學生解決簡單的實際問題的能力,滲透類比、極限的思想。
3、通過圓的面積公式推導過程,培養(yǎng)學生的合作精神和創(chuàng)新意識,培養(yǎng)觀察、猜想、驗證的實驗方法與態(tài)度。
教學重點
圓面積的公式推導的過程。
教學難點
理解圓經過無數(shù)等分剪拼后可以拼成一個近似的長方形。并且發(fā)現(xiàn)拼成的長方形的長相當于圓周長的一半。
教具、學具準備
有關圓面積的課件,彩色圓形紙片(每小組1個),剪刀(每組2把).學生每人準備一個圓形物品。
教學過程
一、創(chuàng)設情境,提出問題
【課件演示】花園里新建了一個圓形花壇,為了讓花壇更漂亮,管理員叔叔打算給花壇鋪上草坪,需要多少平方米的草坪呢?這實際上是要解決什么數(shù)學問題?
揭示課題:圓的面積
二、充分感知,理解圓的面積的意義。
提問:什么叫圓的面積呢?請大家拿出準備好的圓形紙片,用你喜歡的方式感受一下圓的面積,告訴大家圓的面積指的是什么?
課件顯示:圓所占平面的大小叫做圓的面積。
你認為圓面積的大小和什么有關?
三、自主探究,合作交流。
1、引導轉化:
回憶學過的一些平面圖形的面積的推導過程,這些圖形面積公式的'推導過程有什么共同點?那么能不能把圓也轉化成學過的平面圖形來推導面積計算公式?
2、動手嘗試探索。
(1)分小組動手操作,剪一剪,拼一拼,看能拼成什么圖形?
(2)展示交流并介紹:你拼成了什么圖形?在拼的過程中你發(fā)現(xiàn)了什么?
如果我們再繼續(xù)等分下去,拼成的圖形會怎么樣?
小結:隨著等分的份數(shù)無限增加,可以把圓剪拼成一個近似的長方形。
你能否根據圓與剪拼成的長方形之間的關系想出圓的面積公式?
3、學生合作探究,推導公式
圓的面積教學設計活動教案篇7
教學目標:
1、使學生經歷操作、觀察、驗證和討論歸納等數(shù)學活動的過程,探索并掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題。
2、使學生進一步體會“轉化”方法的價值,培養(yǎng)運用已學知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。
3、體會數(shù)學來自于生活實際的需要,感受數(shù)學與生活的聯(lián)系,進一步產生對數(shù)學的好奇心和興趣。
教學重點:
探索并掌握圓的面積公式,能正確計算圓的面積。
教學難點:
理解圓的面積公式的推導過程。
教學準備:
圓的面積公式的推導圖。
一、回顧舊知,引入新知
1、師:四年級時,我們學習了求長方形和正方形的面積的方法,誰來說一說它們的面積的計算方法。
學生回答,教師予以肯定。
2、提問:圓的周長怎么計算?已知圓的周長,如何計算它的直徑或半徑?
3、引入:我們已經研究了圓的周長和直徑、半徑的計算方法,今天這節(jié)課我們來研究圓的面積是如何計算的。
(板書:圓的面積)
設計意圖通過復習,促進學生對周長和已知周長求直徑或半徑的理解,喚起學生求長方形和正方形面積的經驗,為新課的學習做好準備。
二、合作交流,探究新知
1、教學例7。
(l)初步猜想:圓的面積可能與什么有關?說說你猜想的依據。
(2)圓的面積和半徑或直徑究竟有著怎樣的關系呢?我們可以做一個實驗。
(3)出示例7第一幅圖。思考:圖中正方形的邊長與圓的半徑有什么關系?圖中正方形的面積和圓的半徑有什么關系?
(4)學生獨立完成填空。
(5)猜測:圓的面積大約是正方形面積的幾倍?
學生回笞后,明確:圓的面積小于正方形面積的4倍,有可能是3倍多一些。
(6)出示例7后兩幅圖,按照同樣的方法進行計算并填表。
正方形的面積/
圓的半徑/
圓的面積/
圓面積大約是正方形面積的幾倍
(精確到十分位)
2、交流歸納:觀察上面的表格,你有什么發(fā)現(xiàn)?
通過交流,明確
(1)圓的面積是它的半徑平方的3倍多一些。
(2)圓的面積可能是半徑平方的兀倍。
3、教學例8。
(l)談話:經過剛才的學習,我們已經知道圓的面積大約是它半徑平方的3倍多一些,那么圓的面積究竟應該怎樣來計算呢?
(2)操作體驗:教師演示把圓平均分成16份,并拼成一個近似的平行四邊形。
(3)提問:拼成的圖形像什么圖形?追問:為什么說它像一個平行四邊形?
初步想象:如果把圓平均分成32份,也用類似的方法拼一拼,想一想,拼成的圖形與前面的圖形相比有怎樣的變化?
(4)進一步想象:如果將圓平均分成64份、128份,也用類似的方法拼一拼。閉上眼睛想一想,隨著份數(shù)的增加,拼成的圖形會越來越接近一個什么圖形?
(5)交流后,教師出示推導圖。拼成的長方形與原來的圓有什么聯(lián)系?在小組中討論交流。
(6)在集體交流中借助圖示小結:長方形的面積與圓的面積相等;長方形的寬是圓的半徑;長方形的長是圓周長的一半。
(7)追問:如果圓的半徑是r,長方形的長和寬應該怎樣表示?根據長方形面積的計算方法,怎樣來計算圓的面積?
(8)根據學生的回答,教師板書
長方形的面積一長×寬
圓的面積=
(9)追問:有了這樣一個公式,知道圓的什么條件,就可以計算圓的面積了?
4、教學例9。
(1)出示例9,提問:有沒有在生活中見過自動旋轉X器?
(2)想象一下自動X器旋轉一周后噴灌的地方是什么圖形,X的最遠的距離是什么意思。
(3)學生獨立完成計算。
(4)集體交流。
5、教學例10。
(1)請同學讀題,解讀題意。
(2)找出題中的已知條件。
(3)分析解題過程。
(4)明確各個量之間的轉化關系。
三、鞏固練習,加深理解
1、完成“練一練”。
(1)學生獨立解答。
(2)集體交流。
2、完成練習十五第1題。
(l)學生獨立解答。
(2)集體交流。
3、完成練習十五第3題。
(1)學生列式后用計算器計算。
(2)集體交流。
4、完成練習十五第4題。
(1)學生獨立解答。
(2)集體交流,指出:已知周長求面積,先要根據周長求出半徑。
5、作業(yè):練習十五第2、5題。
四、課堂小結
師:通過今天的學習,你有什么收獲?
學生發(fā)言,教師點評。